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Bridge Function and Cavity Correlation Function from 
Simulation: Implications on Closure Relations 

M. Llano-Restrepo 2 and W. G. Chapman 34 

In this paper we review recent molecular simulalion results for the bridge func- 
tion and cavity correlation function of the Lennard-Jones and soft-sphere fluids. 
We demonstrate that clc~sures similar to the Pcrcus Ycvick I PY) closure are 
poor at short range and should only bc valid for repulsive fluids. Finally, by 
comparing with our simtdation results for the Lcnnard-Joncs bridge limclion. 
we show how to rcscalc Ihc Lennard-Joncs bridge funclion so that it can bc 
approximated with the bridge function for a repulsive fluid. 
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thernaodynamic properties. 

!. I N T R O D U C T I O N  

In tegra l  e q u a t i o n  theory  is one  of  the mos t  powerfu l  m e t h o d s  in s tat is t ical  

mechan ic s  for ca lcu la t ing  fluid s t ruc tu re  and t h e r m o d y n a m i c  proper t ies .  In 

m a n y  i n t e g r a l - e q u a t i o n - t h e o r y  ca lcu la t ions ,  the Orns t e in  Ze rn ike  e q u a t i o n  

is so lved based on s o m e  c losure  re la t ion.  Thc  Orns t e in  Ze rn ikc  e q u a t i o n  

for spher ica l ly  synametr ic  molecu les  is g iven by [ 1, 2 ] 

h(r i2) = (.(rl2) + p .  k(r i3) ( ' (r23)dr 3 ( I )  

where  ,'(r,_~) is the di rect  co r r e l a t i on  funct ion ,  h(/~_,) is the to ta l  co r r e l a t i on  

funct ion ,  p is the n u m b e r  densi ty ,  and  r~2 = Ir~ - r21 is the d i s tance  be tween  
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the centers of spherical molecules 1 and 2. A solution to Eq.{1) can be 
[bund given another equation relating the correlation functions: this is 
called a closure relation. In this sense, a closure relation is an approxima- 
tion for a set of integrals known as the bridge l\mction. The exact relation- 
ship between the bridge function and the other correlation functions is 
given by [2]  

B{ r~,) = c ( r , 2 )  + ln[.v(r~_~/] - h ( r , 2 1  (21 

where y(r~_.l is the cavity correlation function. The cavity correlation func- 
tion is related to the total correlation function by 

.1'(1"12 )~-- ~,r(1"12)exp[/h/~(/'l_, )] 13) 

wherc g(ri,_)=h(rw)+l is tile pair correlation ffmction, 4>(r~_,) is the 
pair potential of interaction in the Iluid, and / ]= l/k,T, where /,-, is 
Boltzmann's constant and T is absolute temperature. 

Many approximate closure relations have been proposed [2].  Two of 
the most commonly used integral equation theories are HNC theory [2]  
and Percus Yevick IPY) theory [2 .3 ] .  In HNC theory the bridge func- 
tion is assumed to be zero lbr all r. PY theory assumes that c(rt_,)= 
./'l r~_,l .vl r~: I, where .f(r~_, I = exp[ -/hb(r~_,) ] - 1, which is equivalent to the 
assumption B(r~_,l= I-.l'(r~_,l + ln[.v(r~_,)]. Since the bridge function had 
not been accurately calculated lbr any lluid besides the hard-sphere fluid, 
these approximate closures have been tested by comparing with simulation 
results lbr the pair correlation functions and thermodynamic properties. 

As an alternative to HNC or PY theory, Lado [4]  proposed approx- 
imating the bridge function with the bridge function for a reference fluid 
at a suitably chosen temperature and density. The resulting theory is called 
reference hypernetted chain (RHNCI [4 6]. The thermodynamic properties 
and structure of a fluid can then be calculated given a suitable reference 
fluid and a prescription for determining the state point at which to 
calculate the reference-lluid bridge function. Until recently, the only fluid 
lbr which the bridge function had been accurately calculated was the hard- 
sphere Iluid. In recent years, papers have lbcused on calculating the bridge 
function tor the one-component plasma [ 7], hard spheres [ 8, 9 ], Lennard- 
Jones (LJ} spheres [ 10-13], the soft-sphere fluid [with pair potential given 
by 4>{r)=4c(cs/rl ~2] [ 11], electrolytes [ 14], and liquid metals [ 15]. Two 
problems arise when trying to calculate the bridge function directly fi'om 
molecular simulation: determining the cavity correlation l\mction lbr the 
fluid at short range and obtaining an accurate direct correlation function. 
We have developed two techniques to determine the cavity correlation 
function at short range [ I0]. 
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Our approach is to calculate the cavity correlation function and bridge 
function from molecular simulation as described in detail in a previous 
paper [10].  We have used both Hcnderson's cquation [16] and a dircct 
simulation method [10] to calculate the cavity correlation function. 
Henderson's eqt, ation provides accurate estimates of.v(r) for r near zero. 
The direct simulation method provides estimates tbr any range of r. We 
obtain the direct correlation function from the total correlation function 
through the Ornstein Zernike equation, Eq. (1) [ I, 2, 17], and use Eq. (2) 
to calculate the bridge function. The consistency of the direct correlation 
function is checked by means of the compressibility equation. 

The goal of our work has been to provide accurate bridge functions 
fl-om molecular simulation for a variety of model l]uids over a range of 
conditions [I0,  11]. The purpose is to provide accurate bridge function 
data to test approximate closure relations, to provide a bridge function 
correlation for a fluid other than the hard-sphere fluid (thc soft-spherc 
fluid), and to study the efl'ect of potential models on the bridge function 
and closure relations. Much of this has been accomplished [10, 11]. 
Although the bridge function is no longer thought to be universal, it might 
become useful to divide the bridge function into two parts: one due to 
short-range repulsion and the other due to long-range attraction as has 
been done for the Helmholtz fi'ee energy in perturbation theories for simple 
fluids [2, 14]. Our bridge function results will be essential to testing such 
a perturbation approach. 

2. RESULTS AND DISCUSSION 

It is well known that the configurational properties of the soft-sphere 
fluid scale with a single dimensionless parameter [2]  

/- '  __ D O'3 
( k / / , ; ) l  4 (4) 

The correlation R, nctions for the soft-sphere fluid also scale with F. These 
features make this an interesting fluid to study as a potential reference fluid 
for integral equation calculations. To facilitate this, we provided a corre- 
lation of the soft-sphere bridge Rmction [ 11 ]. The bridge function oscilla- 
tions grow ill magnitude and shift to smaller distances with increasing F. 
We also note that the bridge function is always ~<0 (nonpositive) for the 
soft-sphere fluid. 

Based on our calculations of the soft-sphere bridge function and 
Lennard-Jones bridge function [10,11] ,  we have the opportunity to 
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investigate var ious  p roposed  closure relations.  The PY closure can be 
w r i t t e n  as 

BPY(r )=  - r + l n ( r + l )  (5) 

where r ( r ) =  h ( r ) - ( ' ( r ) .  Other  closures M v c  been proposed  in which the 
bridge function is written as a function of r [14, 18 20].  Since the PY 
approx ima t ion  has been found to be good  lot" fluids with shor t - range  inter- 
actions,  some closures have a t t empted  to match the PY bridge function at 
short  range. As shown in the work by Duh and Haymet  [ 14], it can be 
instructive to plot the bridge function versus r. In Fig. 1, we have plot ted 
B(r)  for the soft-sphere Iluid at var ious  state points. The functional form 
appears  to be independent  of state point.  Also plot ted in Fig. 1 is the PY 
approxin la t ion .  The PY approx ima t ion  is in poor  agreement  with the 
s imulat ion rest, Its up to the first zero of the bridge ftmctio,l, but the PY 
a p p r o x i m a t i o n  is in ver \ '  g o o d  a g r e e m e n t  w i t h  s i m u l a t i o n  resuhs  I'or a l l  
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I;ig. I. The wli-sphere Iluid bridge I'uncfion.~ 1i"o111 simula- 
l i on  [11 ] I s o M  cu rves l  at / ' - I1 , .~ ,  O,4. ().5, (}.6, a l ld  ()'7 

are show i l  Io he i~r in lar i l y  depe l lden l  o l l  k ( r )  - v(#). The  

Pel'Ctis Yevick ¢lostlre (dolled Ctll'Xe) is also shown, bul i! 
is in poor a~reemenl with file sol'l-sphere-lluid simulation 
resulls for large r = hlrl - clr) (small separations). The 
inset shows Ihe st¢l-sphere IltlJd bridge fUllCllon fronl 
sJnltilalion al /'=11.7 1o be a nltlllJvaltled ftlnclJon o1" 
hi t )  c(r) ;it small h l r ) - c l r l .  111 Icrlns of r, Jncre;.isJng 
Ironi r - O .  lhe bridge funclJon ¢[irve cnlcrs al Ihe rJghl. 
has a zen~ al Jl ( r ) -  c l r )~  (I.(16~, reaches a nlinJnl(l111, and 
I]nally oscillates along a single curve ahoul /~l r ) -  ('(rl = 0 
:is the bridge funclion decays [o zero. 
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oscillations bevond the first oscillation. Wc can fit the simulation bridge- 
function results with the function 

A[ - r  + In(r + 11] 
B ( r ) =  

] - r +  In ( r+  1) 

for r />0 up to the first zero orB(r)  

otherwise (6) 

where A -v. 0.65. The parameter A could be treated as an adjustable param- 
eter to obtain thermodynamic consistency [ 2 ]. 

In the inset to Fig. 1 we plot the soft-sphere bridge function for F =  0.7 
and we focus on the oscillations of the bridge function near r =0.  In this 
case, we have replaced the simulation direct correlation function for 
r >  1.3o" with -[hb(r). As seen in Fig. I, the soft-sphere bridge function is 
not a single-valued function of r and the first zero of the function does not 
occur at r =0.  Similar results are found for other values of F and prior to 
making the substitution of -[h[~(r) for the direct correlation function: 
however, they are most easily seen for F =  0.7. It is interesting to note that 
the PY bridge function provides an excellent fit to the soft-sphere bridge 
function after the first minimum. In the region where cir) can be 
approximated by -[hNrl, the bridge function can be written as 

B(r)  = - h ( r )  + l n [h ( r )  + I ] (7) 

Since the pair potential is small in this range, we have found that the 
function 

B ( r ) =  - r  + 1 - e x p [ - [ h N r ) ]  +Infer + e x p [  -[h/Sir)]] (8) 

where Cb(rl is the soft-sphere potential, provides an excellent correlation of 
the soft-sphere bridge function for all values of F if r is not too large 
( r < 2 ) .  

The question arises, can the bridge function always be written as a 
function of r? In Fig. 2 we plot bridge functions for the LJ flu.id determined 
fiom simulation [10] for p* =0.8 with T* = 0.81, 1.0, and 1.5 and p* =0.85 
with T * =  0.72. We observe that the LJ bridge function is not simply a 
function of r: this may be due to the attractions between the LJ spheres. 
If the functional form is only universal for fluids without attractions, the 
PY approximation should be best for repulsive fluids: this is what has been 
observed [2].  If we can add information about the attractions between 
molecules into r, it might be possible to develop a more universal closure. 

For the Lennard-Jones fluid, we can separate the potential into 
reference (repulsive) and attractive parts as was done in the Weeks, 
Chandler, and Andersen (WCA) perturbation theory [21 ]. Separating the 
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Fig. 2. The Lennard-Jones-f luid bridge functions from 
simulat iorl  [10 ]  ( c u r v e s ) p l o t t e d  versus h l r ) - c l r ] .  The 

curves from left to right are Ibr the condi t ions  
p* = prr ~ = (I.85 with T* = 0.72. and  p* = 0.8 with 

T* = 0.81, l.O. and  1.5. No general  corre la t ion  is apparent .  

LJ potential at the minimum, the WCA attractive part of the potential is 
given by 

~,,I r ) =  i_, 6 ( 9 )  
4t: - -  , I' ~ I'mi n 

If we assume that the functional form of B(r) is universal for fluids with- 
out attractions, the bridge function for the WCA reference fluid is only 
dependent on rwcA. The WCA perturbation theory is successful for dense 
fluids in part because the pair correlation function for the WCA reference 
fluid is approximately the same as the pair correlation function for the LJ 
fluid [2].  If we write g~.j(r) ~. gwcA(r) for a dense fluid, then the cavity 
correlation function for the LJ fluid is approximately 

hl [ ) ' l . j ( r )  ] ~ In[ YWCA(r)] +//q~,l(r) (10) 

If we use the random-phase approximation [2, 22, 23] 

~'LJ(l ')  + /]4),,(F ) ~ CWCA(F) ( 1 1 ) 

then fi'om Eqs. 12). (101, and 1111 we have 

Bt.j(rLj) = ln[ ywc,~(r)] +/hb,,(r)- [ h t j ( r ) -  cLj(r)] -~ BwcA(rL. I -[hk,(r)) 
112) 
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Fig. 3. The Lennard-Jones-fltdd bridge functions from smmlation [10] 
(solid curves) at p* = p a ~ =  (1.8 with T* = 0.81. 1.0, and 1.5. and at p* = 0.85 
with T* = 11.72, plolted v e r s u s  h l . l ( r )  - e L l ( r )  - -  f/L, l r j ' kT .  

The LJ bridge function at rLj, B(r, j) ,  is approximately equal to the WCA 
bridge function evaluated at r '= r , j - f lq~ , , ( r ) .  As shown in Fig. 3, by 
plotting the LJ bridge function versus r', we find that BLj(r') appears to be 
nearly the same function as plotted in Fig. I. Equation (6) provides a good 
correlation of the LJ bridge function results [ 10] when r is replaced by r' 
and A is set equal to p*. Because the approximations developed above for 
the LJ fluid are based in part on WCA theory, this closure should be valid 
at intermediate densities. It is not our intent to develop rigorous new 
closures, but to point out interesting features of our calculated bridge 
functions. 

3. CONCLUSIONS 

The simulation distribution functions were used to examine the validity 
of closures based on r = h ( r ) -  c(r). Neither the soft-sphere bridge function 
nor the Lennard-Jones fluid bridge function are single-valued in r. The 
results imply that the bridge function for fluids with weak, short-ranged 
attractions is primarily determined by the short-ranged repulsive part of the 
potential. We conclude that the PY closure is best tbr nonattracting fluids; 
however, a semiempirical closure based on simulation should provide the 
best agreement tbr a variety of fluids. These simulation results should 
provide a strong test for proposed bridge function approximations. 



326 Llano-Restrepo and Chapman 

A C K N O W L E D G M E N T  

W e  g r a t e f u l l y  a c k n o w l e d g e  t h e  S he l l  O i l  C o m p a n y  F o u n d a t i o n  for  

f i n a n c i a l  s u p p o r t  o f  t iffs w o r k .  

R E F E R E N C E S  

I. L, S. Ornstein and F. Zernike. Proc, Akad. Sci...Im.~'terdam 17:793 (1914), 
2. J. P. Hansen and I. R. McDonald. 77wor.v ~lShnl~le Liquids {Academic Press. London. 

19,~6). 
3. J. K. Percus and G. J. Ycvick. Phys. Rev. I10:1 ( 195,':,L 
4. F, Lado. Ph)'s. Rcl'..4 8:254,"; (1973L 
5. Y. Rosenfcld and N. W. Ashcrofl. Phys. Lett. 73A:31 (19791. 
6. Y. Rosenfcld artd N. W. Ashcroft. Ph.vs. Rer. ,-I 20:1208 119791. 
7. P, D. Poll. N. W, Ashcroft. and H. E. DeWitt. Theory of the one-component plasma 

bridge function, presented at the West Coast Statistical Mechanical Conference. June 9, 
19,~7. 

~. I:. H. Ree. R. N. Kccler. and S. L. McCarty, J. CTwm. Phys. 44:34fl7 ( 1966}. 
9. A. Malijevsky and S. Labik. Mol. Ph)'s. 60:663 119871. 

I(). M. Llano-Reslrepo and W. G. Chapman,  ,I. Chem. Phys. 97:2046 (1992). 
II. M. Llano-Restrepo and W. G. Chapman.  J. ('hem. Phys. 100:5139 119941. 
12. L. L. Lee and K. S. Shing. ,/. Chem. Ph.vs. 91:477 ( 19~91, 
13. P. Attard, J. CTwm. Ph.vs. 95:4471 11991 ). 
14. D.-M. Dub and A. D. J. Haymct. J. Chem. Phys. 77:7716 (1992). 
15. E. Lomb:,. M. Alvarez. G. Stell, and J. A. Anta. J. Chem. Phys. 97:4349 ( 19921. 
16. J. R. Henderson. Mol. Phys. 48:3~9 119,~31. 
17. C. G. Gray and K. E. Gubbins.  Theory c~l Molecuhtr Fhdds. l'ohom' 1: Funehtmentals 

(Clarendon Press. Oxlbrd, 1984). 
I~. G. A. Martynov and G. N. Sarkisov. Mol. Phys. 49:1495 ( 19841. 
19. P. Ballone. G. Pastorc. G. Galli. and D. Gazzillo. Mol. Phys. 59:275 (1986). 
2(1. F. J. Rogers and D. A. Young. Phys. Rer. A 30:999 (198,4). 
21. J, D. Weeks, D. Chandler. and H. C. Andersen, J. Chem. Phys. 54:5237 ( 1971 ). 
22. D. Pines and P. Nozi,Sres, The Theory ~!I Quantum Liquids (Benjamin, New York, 19661. 
23. H. C. Andersen and D. Chandler. J. C'hem. Phys. 53:547 (19701. 


