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Bridge Function and Cavity Correlation Function from
Simulation: Implications on Closure Relations'

M. Llano-Restrepo” and W. G. Chapman**

In this paper we review recent molecular simulation results for the bridge func-
tion and cavity correlation function of the Lennard-Jones and soft-sphere fluids.
We demonstrate that closures similar to the Percus Yevick (PY) closure are
poor at short range and should only be valid for repulsive fluids. Finally, by
comparing with our simulation results for the Lennard-Jones bridge function.
we show how to rescale the Lennard-Jones bridge function so that it can be
approximated with the bridge function for a repulsive fluid.

KEY WORDS: bridge function: cavity function: ntegral equation theory:
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1. INTRODUCTION

Integral equation theory is one ol the most powerful methods in statistical
mechanics for calculating fluid structure and thermodynamic properties. In
many integral-equation-theory calculations, the Ornstein-Zernike equation
is solved based on some closure relation. The Ornstein-Zernike equation
for spherically symmetric molecules is given by [ 1. 2]

hrisy=dri)+p ’ hirys) elray) drg ()

where ¢(r,,) is the direct correlation lfunction, /ii(r,) is the total correlation
function, p 1s the number density. and r,, = |r, —r,| is the distance between
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the centers of spherical molecules 1 and 2. A solution to Eq. (1) can be
found given another equation relating the correlation functions; this 1s
called a closure relation. In this sense. a closure relation is an approxima-
tion for a set of integrals known as the bridge function. The exact relation-
ship between the bridge function and the other correlation functions is
given by [2]

Biris)=clri)+In[ v ()] = hilry5) (2)

where v(r5) is the cavity correlation function. The cavity correlation func-
tion is related to the total correlation function by

Yirya)= glrs) expl i) ] (3)

where g(r2)=/hr;>)+ 1 is the pair correlation function, ¢(r,,) is the
pair potential of interaction in the (luid, and f=1/k, T, where k, is
Boltzmann’s constant and 7 is absolute temperature.

Many approximate closure relations have been proposed [2]. Two of
the most commonly used integral equation theories are HNC theory [2]
and Percus-Yevick (PY) theory [2.3]. In HNC theory the bridge func-
tion is assumed (o be zero for all r. PY theory assumes that ¢(r.)=
JUrs) v(rys). where f(r ) =exp[ — fi(r,2)] — 1. which is equivalent to the
assumption B(r.)=1— v(r;-)+ In[ v(r;5)]. Since the bridge function had
not been accurately calculated for any fluid besides the hard-sphere fluid,
these approximate closures have been tested by comparing with simulation
results for the pair correlation functions and thermodynamic properties.

As an alternative to HNC or PY theory. Lado [4] proposed approx-
imating the bridge function with the bridge function for a reference fluid
at a suitably chosen temperature and density. The resulting theory is called
reference hypernetted chain (RHNC) [4-6]. The thermodynamic properties
and structure of a fluid can then be calculated given a suitable reference
fluid and a prescription for determining the state point at which to
calculate the reference-fluid bridge function. Until recently, the only fluid
for which the bridge function had been accurately calculated was the hard-
sphere fluid. In recent years, papers have focused on calculating the bridge
function for the one-component plasma [7]. hard spheres [8,9]. Lennard-
Jones (LJ) spheres [ 10-13]. the soft-sphere fluid [ with pair potential given
by ¢(r)=4de(a/r)'*] [11]. electrolytes [14]. and liquid metals [15]. Two
problems arise when trying to calculate the bridge function directly from
molecular simulation: determining the cavity correlation function for the
fluid at short range and obtaining an accurate direct correlation function.
We have developed two techniques to determine the cavity correlation
function at short range [10].
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Our approach is to calculate the cavity correlation function and bridge
function from molecular simulation as described in detail in a previous
paper [ 10]. We have used both Henderson's equation [16] and a direct
simulation method [10] to calculate the cavily correlation function.
Henderson’s equation provides accurate estimates of 1(r) for r near zero.
The direct simulation mecthod provides estimates for any range of r. We
obtain the direct correlation function from the total correlation function
through the Ornstein-Zernike equation, Eq. (1) [ 1, 2, 17]. and use Eq. (2)
to calculate the bridge function. The consistency ol the direct correlation
function is checked by means of the compressibility equation.

The goal of our work has been to provide accurate bridge functions
from molecular simulation for a variety of model fluids over a range of
conditions [ 10, [1]. The purpose is to provide accurate bridge function
data to test approximate closure relations. to provide a bridge function
correlation for a fluid other than the hard-sphere fluid (the soft-spherc
fluid), and to study the effect of potential models on the bridge function
and closure relations. Much of this has been accomplished [10,11].
Although the bridge function is no longer thought to be universal, it might
become useful to divide the bridge function into two parts: one due to
short-range repulsion and the other due to long-range attraction as has
been done for the Helmholtz free energy in perturbation theories for simple
fluids [2, 14]. Our bridge function results will be essential to testing such
a perturbation approach.

2. RESULTS AND DISCUSSION

It 1s well known that the configurational properties of the soft-sphere
fluid scale with a single dimensionless parameter [2]

pa’ /
r_(kT/l:)"‘ ()
The correlation functions for the soft-sphere fluid also scale with . These
features make this an interesting fluid to study as a potential reference Nuid
for integral equation calculations. To [lacilitate this, we provided a corre-
lation of the soft-sphere bridge function [11]. The bridge function oscilla-
tions grow in magnitude and shift to smaller distances with increasing [
We also note that the bridge function is always <0 (nonpositive) for the
soft-sphere fluid.
Based on our calculations of the soft-sphere bridge function and
Lennard-Jones bridge function {10,11], we have the opportunity to
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investigate various proposed closure relations. The PY closure can be
writlen as

B™M(ny= —t+In(t+ 1) (5)

where t(r)=hir)—c¢(r). Other closures have been proposed in which the
bridge function is written as a function of 7 [ 14, 18 20]. Since the PY
approximation has been found to be good for fluids with short-range inter-
actions, some closures have attempted to match the PY bridge function at
short range. As shown m the work by Duh and Haymet [ 14]. it can be
instructive to plot the bridge function versus 7. In Fig. 1. we have plotted
Bi1) for the soft-sphere fluid at various state points. The functional form
appears to be independent of state point. Also plotted in Fig. | is the PY
approximation. The PY approximation is in poor agreement with the
simulation results up to the first zero of the bridge function, but the PY
approximation is in very good agreement with simulation results for all
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Fig. 1. The soft-sphere flnd bridge functions lrom simula-
tion [11] (solid curves) at /7=03, 04, 0.5, 0.6, and 0.7
are shown to be primarily dependent on itry = ¢(r). The
Percus Yevick closure (dotted curve) 1s also shown. but it
15 10 poor agreement with the soft-sphere-fluid simulation
results for large t=/Mr)—cir) (small separations). The
inset shows the soft-sphere fluid bridge function from
simulation at /7=0.7 1o be a multivalued function of
M)y —ctry at small ey —etr). Inoterms of . increasing
from r =0, the bridge function curve enters at the right.
has a zero at htr) — c(r) 0063, reaches 4 minimum, and
finally oscillates along a single curve about fir)— c(ry=10
as the bridge function decays to zero.
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oscillations beyond the first oscillation. We can fit the simulation bridge-
function results with the function

jAl —t+In(r+1}] for =0 up to thelirst zero of B(t)

Bity= i
(r ) —t+In{t+ 1) otherwise

(6)

where 4 x0.65. The parameter A could be treated as an adjustable param-
cter to obtain thermodynamic consistency [2].

In the inset to Fig. | we plot the soft-sphere bridge tunction for '=0.7
and we focus on the oscillations of the bridge function near r=90. In this
case. we have replaced the simulation direct correlation function for
r> 130 with —fig(r). As seen in Fig. [, the soft-sphere bridge function is
not a single-valued function of t and the first zero of the function does not
occur at t=0. Similar results are found for other values of /™ and prior to
making the substitution ol —fi(r) for the direct correlation function:
however. they are most easily seen for //=0.7. It is interesting 1o note that
the PY bridge function provides an excellent fit to the soft-sphere bridge
function after the first minimum. In the region where ¢{r) can be
approximated by — fih(r). the bridge function can be written us

Biry= —hitry+In[h(r)+ 1] T

Since the pair potential is small in this range, we have found that the
function

Bity= —t+ | —exp[ —fip(r)] + Indc +exp[ — fp(r)]} (8)

where ¢(r) is the soft-sphere potential, provides an excellent correlation of
the soft-sphere bridge function for ail values of I" il 7 is not too large
(t<2).

The question arises, can the bridge function always be written as a
function of ? In Fig. 2 we plot bridge functions for the LJ fluid determined
from simulation [ 10] for p* =0.8 with T* =0.81. 1.0. and 1.5 and p* =0.85
with T*=0.72. We observe that the LJ bridge function is not simply a
function of 7: this may be due to the attractions between the LJ spheres.
Il the functional form is only universal for fluids without attractions, the
PY approximation should be best for repulsive fluids: this is what has been
observed [2]. If we can add information about the attractions between
molecules into r, it might be possible to develop a more universal closure.

For the Lennard-Jones fluid. we can separate the potential into
reference (repulsive) and attractive parts as was done in the Weeks.
Chandler, and Andersen (WCA) perturbation theory [21]. Separating the
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Fig. 2. The Lennard-Jones-fluid bridge functions from

simulation [10] (curves) plotted versus /i(r) —¢(r). The

curves from left to right are for the conditions

pr=pat=085 with T*=072, and p*=08 with

T* =081, 1.0, and 1.5. No general correlation is apparent.

LJ potential at the minimum, the WCA attractive part of the potential is
given by

—& 0 Sr< F min

(r) = 12 6 9
$ulr) 4,:[<2> _<2> ] rer (9)
r r

If we assume that the functional form of B(t) is universal for fluids with-
out attractions, the bridge function for the WCA reference fluid is only
dependent on 7y.,. The WCA perturbation theory is successful for dense
fluids in part because the pair correlation function for the WCA reference
fluid i1s approximately the same as the pair correlation function for the LJ
fluid [2]. IT we write g, ;(r) = gwealr) for a dense fluid, then the cavity
correlation function for the LJ fluid is approximately

In[yy (] =In[ ywealr) ]+ B, (r) (10)
If we use the random-phase approximation [ 2, 22, 23]
)+ Bhur) = cwealr) (11)
then from Eqgs. (2). (10), and (11) we have

Byt ) =In[ ywealr) ]+ B, (r) = [h(r) — e s(n) ] = Bwealty g — (1)
(12)
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Fig. 3. The Lennard-Jones-fluid bridge functions from simulation [10]
{solid curves) at p* = pa* = 0.8 with T* =081, 1.0, and 1.5, and at p* = 0.85
with 7% =0.72, plotted versus /i (r) —cy(r)— ¢, (rykT.

The LJ bridge function at t,,. B(t,,), is approximately equal to the WCA
bridge function evaluated at ' =17, —fip.(r). As shown in Fig 3, by
plotting the LJ bridge function versus 7', we find that B (t') appears to be
nearly the same function as plotted in Fig. |. Equation (6} provides a good
correlation of the LJ bridge function results [ 10] when 7 is replaced by 1’
and A is set equal to p*. Because the approximations developed above for
the LJ fluid are based in part on WCA theory, this closure should be valid
at intermediate densities. It is not our intent to develop rigorous new
closures, but to point out interesting features of our calculated bridge
functions.

3. CONCLUSIONS

The simulation distribution functions were used to examine the validity
of closures based on = h(r)— ¢(r). Neither the soft-sphere bridge function
nor the Lennard-Jones fluid bridge function are single-valued in 7. The
results imply that the bridge function for fluids with weak, short-ranged
attractions is primarily determined by the short-ranged repulsive part of the
potential. We conclude that the PY closure is best for nonattracting fluids;
however, a semiempirical closure based on simulation should provide the
best agreement for a variety of fluids. These simulation results should
provide a strong test for proposed bridge function approximations.
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